A company is building a line-counting application for use in a quick-service restaurant. The company wants to use video cameras pointed at the line of customers at a given register to measure how many people are in line and deliver notifications to managers if the line grows too long. The restaurant locations have limited bandwidth for connections to external services and cannot accommodate multiple video streams without impacting other operations.Which solution should a machine learning specialist implement to meet these requirements?
A company offers an online shopping service to its customers. The company wants to enhance the site's security by requesting additional information when customers access the site from locations that are different from their normal location. The company wants to update the process to call a machine learning (ML) model to determine when additional information should be requested.The company has several terabytes of data from its existing ecommerce web servers containing the source IP addresses for each request made to the web server. For authenticated requests, the records also contain the login name of the requesting user.Which approach should an ML specialist take to implement the new security feature in the web application?
A Machine Learning Specialist is packaging a custom ResNet model into a Docker container so the company can leverage Amazon SageMaker for training The Specialist is using Amazon EC2 P3 instances to train the model and needs to properly configure the Docker container to leverage the NVIDIA GPUsWhat does the Specialist need to do1?
A data science team is planning to build a natural language processing (NLP) application. The application's text preprocessing stage will include part-of-speech tagging and key phase extraction. The preprocessed text will be input to a custom classification algorithm that the data science team has already written and trained using Apache MXNet.Which solution can the team build MOST quickly to meet these requirements?
A retail company uses a machine learning (ML) model for daily sales forecasting. The company's brand manager reports that the model has provided inaccurate results for the past 3 weeks.At the end of each day, an AWS Glue job consolidates the input data that is used for the forecasting with the actual daily sales data and the predictions of the model. The AWS Glue job stores the data in Amazon S3. The company's ML team is using an Amazon SageMaker Studio notebook to gain an understanding about the source of the model's inaccuracies.What should the ML team do on the SageMaker Studio notebook to visualize the model's degradation MOST accurately?