A financial services company wants to automate its loan approval process by building a machine learning (ML) model. Each loan data point contains credit history from a third-party data source and demographic information about the customer. Each loan approval prediction must come with a report that contains an explanation for why the customer was approved for a loan or was denied for a loan. The company will use Amazon SageMaker to build the model.Which solution will meet these requirements with the LEAST development effort?
A Machine Learning Specialist needs to create a data repository to hold a large amount of time-based training data for a new model. In the source system, new files are added every hour Throughout a single 24-hour period, the volume of hourly updates will change significantly. The Specialist always wants to train on the last 24 hours of the dataWhich type of data repository is the MOST cost-effective solution?
An employee found a video clip with audio on a company's social media feed. The language used in the video is Spanish. English is the employee's first language, and they do not understand Spanish. The employee wants to do a sentiment analysis.What combination of services is the MOST efficient to accomplish the task?
A health care company is planning to use neural networks to classify their X-ray images into normal and abnormal classes. The labeled data is divided into a training set of 1,000 images and a test set of 200 images. The initial training of a neural network model with 50 hidden layers yielded 99% accuracy on the training set, but only 55% accuracy on the test set.What changes should the Specialist consider to solve this issue? (Choose three.)
An online delivery company wants to choose the fastest courier for each delivery at the moment an order is placed. The company wants to implement this feature for existing users and new users of its application. Data scientists have trained separate models with XGBoost for this purpose, and the models are stored in Amazon S3. There is one model fof each city where the company operates.The engineers are hosting these models in Amazon EC2 for responding to the web client requests, with one instance for each model, but the instances have only a 5% utilization in CPU and memory, ....operation engineers want to avoid managing unnecessary resources.Which solution will enable the company to achieve its goal with the LEAST operational overhead?